These guidelines are meant as inspiration for advanced Integrated Production (IP). Any organization that wants to design and operate an Integrated Production scheme can follow these guidelines. Guidelines drafted by national or regional organisations are referred to in the text as National or Regional IP guidelines.

This guideline consists of parts from the IP General Technical Guidelines on Annual and Perennial Crops and the Crop Specific Technical Guidelines for Integrated Production (text marked in green).

Two levels are distinguished:

- **Strict rules** are the minimum requirements that, according to the IOBC-WPRS, have to be met to ensure that the potential of the IP approach can be realized.
- **Recommendations** are preferred options for a higher level of IP application constituting extra care for the IP objectives. These approaches may increase the cost of production or the effort required.

1. General Aspects

In Integrated production good agricultural practices must be applied, products must be traceable to the producer and self-evaluation practice

<table>
<thead>
<tr>
<th>Strict Rules</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General Aspects</td>
<td>1.1 Good Agricultural Practice (GAP), food safety management procedures and Integrated Production Standard</td>
</tr>
<tr>
<td>The IOBC General and crop specific Guidelines do not and cannot mention all published "must" rules of Good Agricultural Practice, but will present selected requirements that seem to be of special relevance to the IP concept. Any organisation that produces according to a certified IP standard will also have to comply with any national or international GAP/food safety standard as pertinent for their situation and markets.</td>
<td></td>
</tr>
<tr>
<td>1.2 Traceability aspects out of general aspects</td>
<td>All participants of the food production chain are responsible for the quality of the final product and, if appropriate, for the quantification of (pollutant) residue levels. All farm products that are IP certified must be traceable to the registered farm and field where it has been grown.</td>
</tr>
<tr>
<td>1.3 Self evaluation</td>
<td>Each farm participating in a certified IP production scheme has to complete once per year the inspection protocol (= check-list) of the specific IP scheme (as made available by the organisation that implements the IP guidelines).</td>
</tr>
</tbody>
</table>

2. Biodiversity and landscape	**Biodiversity is one of the major natural resources of the farm to minimise pesticide input. IP guidelines therefore must specify a strategy to actively optimise the biological diversity at all 3 levels (genetic, species, ecosystem).**	
2.1 Ecological infrastructure	The (non-conned) ecological farm infrastructures must cover at the surface of ecological infrastructure with low production.	
Crop rotation/sequence is a major method to improve soil quality and to prevent pests, diseases and weeds.

4.1 Annual crops: Frequency and sequence

The principle of crop rotation must be applied, since it is a major method:

- To maintain and improve soil fertility in the broadest sense, including soil physical- (structure), soil biological- (soil biota, positive and negative) and soil chemical aspects (nutrient reserves and organic matter composition). The interaction between crops, soil, intensity and without pesticide/fertilizer input should increase to 10%.

Development of a professionally formulated conservation assessment and plan for the farm and its implementation are recommended.

Special attention should be given to enhance the functional biodiversity in and around fields:

- Avoiding risks of increasing host pests.
- Enhancing the functional biodiversity is possible after conducting specific studies focusing on the target organisms whose populations we wish to increase. IP guidelines should recommend appropriate species.
- It is recommended to increase biodiversity within orchards providing ecosystem services such as pest regulation or improved nutrient uptake efficiency or weed seed predation. e.g. by practicing an alternating mowing regime with a permanent supply of flowering plants as food sources for the orchard fauna.
- Plants species that form the vegetation cover in the alleyways should be naturally occurring or be selected/planted due to its favourable characteristics.
- Contamination by spray drift from neighbouring crops can be detrimental to beneficial and other fauna. It is advisable to protect the orchard by planting windbreaks as barriers.

3. Site selection

3.1 Site selection

Only fields suitable for sustainable production of a particular crop can be used for IP production.

If new sites are being brought into cultivation a proper assessment must be done on the suitability of the site for IP production considering prior use of land, type of soil, erosion potential, soil health status, and prior use of persistent herbicides, quality and level of ground water, availability of sustainable water sources, and impact on and of the adjacent area. Non suitable sites must not be used for production.

For new agricultural sites a plan needs to be developed, describing and scheduling the measures to minimise all identified (and controllable) risks for environment and crops.

3.2 List of options

IP guidelines must provide a list of at least 5 ecological options for the active enhancement of biological diversity.

At least 2 appropriate options have to be selected as "must" by the individual farmer. Examples of lists of options are given in the IOBC-WPRS Tool Box.

3.3 Field size

The lateral dimension of an individual field should be considered as an important element in functional biodiversity, to provide ecological reservoirs and to secure connectivity with adjacent ecological infrastructures (see IOBC-WPRS Tool Box).

Buffer zones should preferably be wider than 3 meters.

3.4 Buffer zones

Buffer zones between crop areas and sensitive off-crop areas, (such as surface waters, springs, important ecological infrastructures, heavily travelled roads, infested crops, hibernation areas of pests and diseases), must respect legal regulations. If no official regulation exists, buffer zones must be at least 3 m wide.

Recommendations

- Suitability of the site has to be assessed and taken into account.
- For new agricultural sites a plan needs to be developed, describing and scheduling the measures to minimise all identified (and controllable) risks for environment and crops.
- A rotation should include at least 4 different crops. In mountain regions and in areas with special conditions, this might not apply.
- The crop rotation consists out of a number of crops grown in a specific order. The added value of this team of players (crops) increases the more attention is given to a careful design of the rotation: finding an optimum team and line-up. It is therefore
A good use of crop rotation can ensure an optimal quality production with a minimum of external inputs (labour) notably those that are polluting and based on fossil energy (pesticides, fertilisers, machinery and support energy).

1. Select and characterise potential crops with respect to:
 a) their production-ecology characteristics, marketability and profitability (soil, climate, infrastructure, market, auctions, industry, labour-, capital- and machinery demand etc.),
 b) Their plant families (legumes, crucifers etc)
 c) Their phytopathological profile: range of pests and diseases that can affect the crop (indicate if they are polyphagous or specific)
 d) Their management demands profile, like sowing time.
 e) their potential role concerning:
 - prevention and control of pests, diseases, weeds (resistance, tolerance and required or possible control measures),
 - physical soil fertility (especially effect on soil structure on compaction-susceptible soils),
 - chemical soil fertility (N need, -offtake, - transfer, organic matter supply),
 - cropping period and soil cover (soil protection for erosion-susceptible soils).

2. Design of the rotation with a maximum of positive and a minimum of negative interactions between the crops. Take into account:
 a) prevention and control of pests and diseases by the crop rotation composition: crops, frequencies and sequence,
 b) soil fertility in the broadest sense and in particular organic matter- and N dynamics,
 c) diversification crop - pest, disease weeds interactions,
 d) feasibility crop sequence in terms of harvest time, crop residues and volunteers from preceding crops,
 e) agronomic optimal use land, labour and equipment.

The obvious tension between agronomic potentials and economic performance determines the final set-up. However, economic performance should be evaluated at rotation/farm level on the midterm and not on crop level on the short term.

Use nematode-resistant/neutral plants as catch crops.

Maize should not be grown more than one year in three in a field.

With sufficient precipitation, intercropping maize stands with soil covering plants is recommended (crops such as grass or clover-grass or tolerated weeds).

5. Sustainable soil management

Sustainable soil management aims at preserving and optimising soil quality (chemical, physical and biological) in order to sustain quality production on the long term.

Sustainable soil management is an interplay between key farming methods such as crop rotation, fertilisation and soil tillage:

- For crop rotation see 4.1 and 4.2 for respectively annual and perennial crops, see also 4.3/5.2 for cover crops
- For soil fertility/nutrient management: see 7
- For soil tillage see 5.1 and for organic matter management 5.3

5.1 Soil tillage and compaction

Soil tillage methods and farm machinery use (type, intensity and traffic control: here called field traffic) are key factors to reduce erosion risk and sustain and improve soil fertility. Controlled traffic helps to improve aeration and water infiltration appropriate soil tillage improves bio-physical soil properties.

Minimum soil tillage or non-inversion tillage is recommended. However, if soil borne damaging organisms (weeds, pests, diseases) increase to a level that endangers crop production at all, occasional ploughing is appropriate.

Tillage of soil can be used to optimise nitrogen management.
6. Cultivars, rootstocks / cultivation systems

Healthy and vital seeds, rootstock and/or plant material is important for a healthy and resilient crop. Using resistant and tolerant cultivars and varieties for the major pests and diseases is an essential element of the IP approach.

Disease resistant or tolerant varieties should be chosen if they are available and commercially acceptable. Appropriate cultivars can support IP approaches by reducing off farm agro chemical inputs such as fertilizers and pesticides. For instance through adequate resistance or tolerance to major diseases and pests. Alternation of cultivars (e.g. ripening period for flies) capable to disrupt pest cycle are recommended, where appropriate.

6.1 Choice of cultivars

Cultivars and rootstock must be adapted to local conditions. IP guidelines must supply the growers with a list of suitable cultivars. The list should be based also on existing official national lists of varieties. IP guidelines must specify the relevant traits of the cultivar that have to be taken into account when choosing a cultivar, such as disease and pest tolerance and resistance. Select cultivars suited to the region and site with resistance/tolerance to soil-borne diseases or pathogen vectors and leaves or ears diseases (Rust diseases and Helminthosporium) and with Fusarium tolerance. In areas prone to fly, select cultivars with rapid seedling emergence and development.

Disease resistant or tolerant varieties should be chosen if they are available and commercially acceptable. Appropriate cultivars can support IP approaches by reducing off farm agro chemical inputs such as fertilizers and pesticides. For instance through adequate resistance or tolerance to major diseases and pests. Alternation of cultivars (e.g. ripening period for flies) capable to disrupt pest cycle are recommended, where appropriate.

6.2 Seed and plant quality and health status

Annual crops:
All seed and planting material for annual and herbaceous perennial crops that is purchased must be certified and accompanied by a plant health certificate.
Perennial crops:
If available, planting material for perennial crops must be sound and certified as virus tested, vector and disease free. Where this is not available, planting material of the highest health status available must be used.

Annual crops:
Alternation and mixtures of cultivars are recommended, where appropriate.
Seed and Planting material should be of the highest possible level of health status (virus/disease free).
Perennial crops:
All propagation material should be inspected by the grower to be free of pests and diseases. Infested material must not be used.
It is strongly recommended that plant health quality control systems are implemented for private or inhouse (on farm) nursery propagation.

6.3 Cultivation/fruit management, planting and pruning

The cultivation system, including planting pattern, training and pruning, has to respect the optimum physiological status of the crop plant. The cultivation system, including planting pattern, training and pruning, has to respect the optimum physiological status of the crop plant.
New plantations should adopt locally adapted cultivation systems that allow integrated plant protection principles and measures to enhance biodiversity to be integrated optimally.

<table>
<thead>
<tr>
<th>7. Plant nutrition</th>
<th>Fertilisation should consider all aspect linked to soil management (see §5) and should be adapted to plant needs (types, dosages and timing) considering the farm context.</th>
</tr>
</thead>
</table>
| 7.1 Nutrient management strategy macro nutrients P, K | IP guidelines must specify agronomically desirable and environmentally acceptable target ranges for soil fertility for at least P and K.
A nutrient allocation plan for P and K for each crop on a plot/field level must be established, taking into consideration:
- The actual field status of soil fertility in relation to agronomically desirable and environmentally acceptable levels (P, K evt Mg).
- The balance approach: Off-farm fertilizer input must only compensate the real exportation and unavoidable technical losses resulting:
 - for annual crops in an balance of inputs and exports at a rotational level (including the technical unavoidable losses),
 - for perennial crops in an annual balance of inputs and exports.
- Additional inputs can be justified to maintain the desired soil fertility level, Inputs exceeding this plan are unacceptable: for instance small quantities of phosphate are sufficient to cause over-enrichment of surface waters. Phosphate from agricultural land is mostly translocated by erosion of small soil particles.
- The distribution of macro nutrients over the years might be different to the export with crops, as long as the rotational balances are maintained. |
| 7.2 Assessing P, K and other nutrient requirements | Organic matter and nutrient analysis (minimal for P and K) of the soil is the basis for assessing nutrient requirement (except N): see 6.1.
Soil analyses for the major elements, P, K, Mg, must be carried out at defined intervals (i.e. 3-10 years, depending on the crop).
IP guidelines must specify the analysis techniques and desired ranges of soil fertility. See also 6.1.
Uptake and demand criteria for major nutrients are an additional source for fertilization plans, however the soil balance approach on a rotational level must be maintained.
Foliar analysis can be applied as complementary test method. |
| 7.3 Nitrogen supply and timing | N supply and timing must be matched with the crop demand. The use of nitrogen needs particular care because nitrogen leaching and evaporation have significant environmental consequences.
A N fertilization plan must be established that specifies for every crop and plot the N sources and available amounts and shows how the crop demand is met. Taking into account:
Hidden nutrient sources such as importation through polluted air (N).
The soil mineral N status before cropping season.
Mineral N and N mineralisation from organic sources.
IP guidelines have to define for each crop the maximum nitrogen input, (expressed in kg N/ha/year or crop rotation component), and specify eventually the time-window of adequate N application.
The chemical content of at least NPK in all inorganic and organic fertilizers must be known and documented.
Where possible and appropriate N fertilization systems must be used that enable split applications based on N status of soils and or plants.
Adjust and split N-supply according to crop needs.
N - requirements should be covered by Leguminosae, (biological N-fixation), to the largest possible extent while preventing any danger of leaching and taking into account possible effect on augmenting soil borne damaging organisms.
The total amount of available nitrogen in organic fertilisers should be accounted for a period of 3 years.
The use of slow release fertilizers can contribute to minimize nutrient losses and increasing nutrient availability during the period that they are most needed. |
| 7.4 Supply of other major or micro nutrients | Inputs have to be justified on the basis of a fertilization plan. See 6.1 nutrient allocation plan.
The replacement of mineral P-input through enhancement of the activity of soil organisms (e.g. mycorrhiza) should be... |
7.5 Organic manures

Organic manures or compost can help to improve soil fertility by increasing organic matter content, improving nutrient and water retention, and reducing erosion.

Organic manures must contain only the lowest possible load of heavy metals and other contaminants and meet the legal regulations.

Any use of treated human sewage sludge on land destined for agricultural use must be in accordance with updated versions and internationally applied "Codes of Practice for the agricultural use of Sewage Sludge". Existing "Codes of Practice for the Control of Microbial Hazards" give further guidance. Untreated human sewage sludge must not be applied to farmland.

7.6 Safe and efficient application of fertilisers and manures

Application machinery must be kept in good condition. Regular servicing and annually verifying calibration, (quantity per time and per area), must be carried out by the qualified farmer or a specialised company.

IP guidelines must contain lists of measures to reduce technically unavoidable nutrient losses by leaching, erosion and evaporation, (e.g. ground cover or timing of soil cultivation).

Manures and fertilizers must not be applied to logged water, frozen soil, or steep ground where there is a risk of run-off.

7.7 Storage of fertilisers

Storage conditions and safety precautions for fertilizers must fulfill the basic requirements of Good Agricultural Practice (GAP).

Solid fertilisers, manures and plant nutrients must be stored in a clean, dry location where there is no risk of water contamination.

Inorganic and organic fertilisers must not be stored with fresh produce and plant propagation material.

<table>
<thead>
<tr>
<th>Strict Rules</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Irrigation</td>
<td>Irrigation has to be based on crop requirement and the irrigation method has to be adapted to the crop and farming context. Irrigation must be applied according to need and with the best methods to avoid losses (e.g. micro-irrigation). Excessive soil moisture may result in leaching of nutrients, competition with weeds, and risks of pest and disease (outbreaks). Excessive use of irrigation water is wasteful.</td>
</tr>
<tr>
<td>8.1 Water requirement of the crops</td>
<td>All measures must be taken to minimise water loss and to optimise product quality. Irrigation is only justified if the available water does not satisfy the crop's requirements taking into account also soil types, climatic conditions and the relation between the amount applied and quality/quantity of the crop. The calculated water amount must not exceed field capacity (water holding capacity) also to avoid nitrate leaching.</td>
</tr>
<tr>
<td>8.2 Irrigation methods</td>
<td>A water management plan must be available at the farm that specifies water sources, the decision support tools, the irrigation methods, etc. The irrigation plan needs to be established individually for each plot. This will help to optimise water usage and reduce waste, e.g. irrigating at night, maintenance to reduce leakage, collection of rainwater from roofs, etc.</td>
</tr>
<tr>
<td>8.3 Water quality and supply</td>
<td>Irrigation water has to be shown to be of adequate quality (conductivity, C1-content, salinity and content of polluting agents), not exceeding the official tolerance levels, and pathogens relevant to the crop. The use of untreated sewage water for irrigation/fertigation is prohibited. Where treated sewage water is used, water quality must comply with the WHO-Guidelines on "Safe Use of Wastewater and Excreta in Agriculture and Aquaculture".</td>
</tr>
<tr>
<td></td>
<td>The use of organic fertilisers, including high quality compost, should be promoted. More severe limitations for heavy metal and other toxicants exceeding minimum legal requirements are to be encouraged.</td>
</tr>
<tr>
<td></td>
<td>Slurry should not be applied within 10 m of a watercourse or 50 m from a well, spring or borehole that supplies water for human consumption or for use in farm dairies. Injection or low emission methods of application of manures and slurry should be applied to reduce ammonia and GHG emissions.</td>
</tr>
<tr>
<td></td>
<td>Irrigation scheduling systems should be used where available. Advanced systems like deficit irrigation should be used. Systems used should:</td>
</tr>
<tr>
<td></td>
<td>- Utilise, whenever possible, local data on reference evaporation rates calculated by means of local meteorological stations.</td>
</tr>
<tr>
<td></td>
<td>- The amount of applied water should be recorded in the farm records.</td>
</tr>
<tr>
<td></td>
<td>Avoid drought stress after flowering stage to prevent mycotoxin production by Aspergillus.</td>
</tr>
<tr>
<td></td>
<td>The most efficient and commercially practical water delivery system should always be used to ensure best utilisation of water resources. Whenever possible, a combination of irrigation with fertilisation (fertigation) should be considered. Take into account that irrigation might influence the nutrient dynamics.</td>
</tr>
<tr>
<td></td>
<td>Irrigation water should be obtained from sustainable sources, (i.e. sources that supply enough water under normal conditions). The regular analysis of the water quality with respect to heavy metals, N, and Na/C1 content etc., is recommended. The installation of measuring devices in every plot for monitoring and calibration is encouraged.</td>
</tr>
<tr>
<td></td>
<td>The calculated water amount must not exceed field capacity (water holding capacity) also to avoid nitrate leaching.</td>
</tr>
<tr>
<td></td>
<td>The most efficient and commercially practical water delivery system should always be used to ensure best utilisation of water resources. Whenever possible, a combination of irrigation with fertilisation (fertigation) should be considered. Take into account that irrigation might influence the nutrient dynamics.</td>
</tr>
<tr>
<td></td>
<td>The installation of measuring devices in every plot for monitoring and calibration is encouraged.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Strict Rules</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Integrated plant protection (IPM)</td>
<td>The Principles of Integrated Plant Protection have to be applied. Preventive (indirect) measures and observations in the field on pest, disease and weed status must have been considered before intervention with direct plant protection measures takes place.</td>
<td>The prevention and/or suppression of key pests and diseases must be supported among other options especially by:</td>
</tr>
<tr>
<td>9.1 Prevention (= indirect protection)</td>
<td>The prevention and/or suppression of key pests, diseases and weeds can be achieved or supported among other options especially by the:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Choice of appropriate resistant/tolerant cultivars.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Use of an optimal replanting interval or similar strategy to prevent diseases and weakness.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Use of adequate cultivation techniques, (e.g. green cover, pruning, removal of infected prunings, alternate mowing); pruning not only removes dead tissues but also allows proper ventilation and more effective spray coverage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Use of balanced fertilisation (especially low nitrogen input) and irrigation practices.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Protection and enhancement of important natural enemies by adequate plant protection measures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Utilisation of ecological infrastructures inside and outside production sites to enhance a supportive conservation biological control of key pests by antagonists.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IP guidelines must (see 8.1.3.c) describe a basic selection of preventive measures that have to be implemented. The prevention and/or suppression of key pests and diseases must be supported among other options especially by:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• See points 3, 4, 5, 6, 7 & 8</td>
<td></td>
</tr>
<tr>
<td>9.2 Risk assessment and monitoring</td>
<td>Interventions to control pests, diseases and weeds must be based on adequate monitoring methods and tools to determine whether and when to apply direct control measures. Robust and scientifically sound warning, forecasting and early detection/decision systems (decision support systems) as well as sound threshold values are essential components for decision making. The official forecasts of pest and/or disease risks, or officially established threshold levels defined for the region must be taken into account before treatments.</td>
<td>Empirical threshold values should be replaced by more scientifically sound approaches, like DSS, and expert systems. Use of DSS to forecast risk of contamination by mycotoxin.</td>
</tr>
<tr>
<td>9.3 Direct plant protection method</td>
<td>Where indirect plant protection measures are not sufficient to prevent a problem and forecasts and threshold values indicate a need to intervene with direct plant protection measures, priority must be given to:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Those measures which have the minimum impact on human health, non-target organisms and the environment.</td>
<td></td>
</tr>
</tbody>
</table>
| | • Biological, biotechnical* and physical methods must be preferred above chemical methods if they provide satisfactory control. *
| | Biotechnical control methods are defined in applied entomology as highly specific procedures that influence the behavior or development of pests without direct biocidal activity, such as mating disruption, deterrents, sterile insect technique. |
| | Animal pests |
| | For the control of Com borers and Cotton ball worm, only biological agents (e.g. Trichogramma, B. thuringiensis biobesticide); insecticides classified “yellow” or “green” in the IOBC-WPRS Pesticide Side Effect Database must be used in accordance with threshold levels. Other maize pests may be controlled in exceptional circumstances according to threshold levels. |
| | Weeds |
| | No herbicides before sowing. |
| 9.3.1 Restrictive use of pesticides | IP guidelines must (see 8.1.3.d) classify pesticides (to be used for the key pests, diseases and weeds) in three categories: |
| | The use of reduced dosages is recommended wherever possible in accordance with national documentation, experience and legislations. |
| | The prevention and/or suppression of key pests and diseases should be supported among other options especially by: |
| | • Hygiene, proper disinfection or cleaning of buildings, clothes, hands, tools, booms, tanks, sprayers and machines is recommended. |
| | • Preventing the carryover of organisms which transmit a phytophysiological damage potential, when spread. Examples: Weeds like Cyperus esculentus or Rorippa palustris, nematodes like Globodera rostochiensis, fungi like Plasmophrora brassicae with machines. |
| | The prevention and/or suppression of key pests and diseases should be supported among other options especially by: |
| | • In areas with severe and frequent European Corn Borer (Ostrinia nubilalis) or Mediterranean Corn Borer (Zeusia nonagrosettis) attacks, crop residues should be minutely chopped and incorporated into the soil before pupae formation. |
| | • In areas with severe and frequent infestation of Fusarium, crop residue should be effectively incorporated in the soil or removed from the fields. |
| | Weed management should be achieved, as far as possible, by non-chemical methods. |
| | Seed treatment against insects and soil born fungi if relevant in the region/on the site. |
| | Animal pests |
| | Only “green” pesticides from the IOBC-WPRS Pesticide Side Effect Database. |
| | Multiple years and spatial approaches to manage Diabrotica populations. |
| | Diseases |
| | Minimize arthropod pest damage to reduce mycotoxin risk. |
| | Apply only fungicides based on a risk evaluation – high risk following minimal tillage and previous crop has been maize. |
| | Weeds |
| | Prefer post emergence herbicides. |
| | Apply time thresholds, if working knowledge/support is regionally available. |
| | Use mechanical weed control as a general strategy, including prior to sowing. |
| | Band spraying is recommended (combine chemical control in the row and mechanical between and in the rows). |
| | Toxic weeds (e.g. Ambrosia, Datura species) should be monitored and long term managed. |
permitted (green list), permitted with restrictions (yellow list) and not permitted (red list) based upon:

- Their toxicity to man
- Their toxicity to key natural enemies
- Their toxicity to other non-target organisms
- Their pollution potential for the environment (soil, water, air)
- Their ability to stimulate pests and diseases
- Their selectivity
- Their persistence
- Their potential to develop resistance in target
- Incomplete or missing information
- The necessity of use.

Regularly updated data on the eco-toxicological profiles of pesticides are compiled by IOBC cf. toolbox.

All agrochemicals used must fulfill the basic requirements of GAP.

- The plant protection product applied must be officially approved for the target, as indicated on the product label, or for officially approved off-label uses.
- In countries that have no official registration schemes yet, reference is made to the FAO Code of Conduct on the Distribution and Use of Pesticides.
- All pesticide applications must comply with the statutory conditions regarding the specific crop, maximum permitted total dose, maximum number of treatments, spray intervals and pre-harvest interval, as indicated on the product label or authorised off-label uses.
- Since label doses are maximum doses approved by the registration authorities, reduced dosages are possible, (especially in herbicides).

Chemical soil disinfection is not allowed.

9.3.2 Resistance management

Where the risk of resistance against a plant protection measure is known and where the level of pests, diseases or weeds requires repeated application of plant protection products in the crops, IP guidelines and IRAC / HRAC/ FRAC** have to provide clear recommendations or mandatory requests for an anti-resistance strategy to maintain the effectiveness of the products.

**:

- IRAC = Insecticide resistance action committee
- HRAC = Herbicide resistance action committee
- FRAC = fungicide resistance action committee

9.4 Lists to be compiled as part of IP guidelines

IP guidelines must establish for each crop:

1. A restrictive list of key pests, diseases and weeds that are economically important and require regular control measures in the region / crop concerned.
2. A list of the most important known site-specific natural antagonist(s), with information on their importance in each crop. The protection and augmentation of at least 2 antagonists must be mentioned in advanced as a desirable objective sustainable production systems.
3. A list of preventive and highly selective direct control measures to be used in the IP program ("green list"). See explanations and examples in the IOBC-WPRS Tool Box.
4. A list of pesticides to be used with restrictions ("yellow list"): A selected group of plant protection products that do not qualify for the "green list" but should be available to the grower despite certain negative aspects, (especially for reasons of resistance management or earmarked for exceptionally difficult cases). These listed products are permitted only for precisely identified uses with clearly defined restrictions.

9.5 Application and recording of pesticides

All pesticide applications must be registered with name, date, crop-pest / crop- disease combination, dosage and field identification where applied.

Buffer zones of adequate size between treated crop areas and

It is strongly recommended that the application of pesticides is limited to the smallest possible area (e.g. band spraying, spot treatments, field and site specific localized treatment).

The use of best application techniques available to minimize...
9.6 Efficient and safe storage and handling of pesticides

9.6.1 Storage

Pesticides must be stored in accordance to legal regulations, in a locked room and separated from other materials. Keys and access to the pesticide store must be limited to workers with formal training in the handling of pesticides. Pesticides must only be stored in their original package.

9.6.2 Safe handling, application and training

- There must be adequate facilities for measuring, mixing and filling the products.
- Adequate emergency facilities, such as running water, eyewash facilities, first aid box and emergency procedures, must be provided to deal with potential operator contamination.
- Operators must have appropriate protective clothing and equipment for all operations involving chemicals.
- All sprayer operators must have appropriate training and hold, where relevant, the appropriate certificate of competence.

9.6.3 Disposal of surplus mix, obsolete pesticides and empty containers

- Surplus mix or tank washings must either be sprayed onto a designated untreated part of the crop or disposed of by a registered waste contractor or applied in a biodegradation unit.
- The safe disposal of spare pesticides must be planned and recorded. They must only be disposed of through an approved chemical waste contractor. Empty pesticide containers must be rinsed with water three times and the rinse water returned to the spray tank. Empty containers must not be re-used but should be crushed or perforated to prevent re-use.

Under normal circumstances surplus spray mix should not occur. However, if surplus should occur, disposal must comply with local regulations. Applications onto designated fallow land should demonstrate that this is legal practice and that there is no risk of surface water contamin.

9.7 Spraying equipment (pesticides) and technique

- The basic requirements of Good Agricultural Practice (GAP) with respect to the operation and maintenance of spray equipment must be fulfilled and outlined in IP guidelines.
- The equipment must be kept in a good state of repair. Adequate functioning of the equipment must be verified before each treatment. A thorough technical service of the equipment, especially manometers and nozzles, should follow the national rules and obligations.
- Equipment must be verified every 4 year (3 years from 2021) or according to the national guidelines by a competent organisation for correct operation and calibration.
- The use of aircraft and helicopters is forbidden, except for situations where access to the plot is impossible because of exceptional weather conditions, or if plot topography allows no other way of spraying.
- Radial flow air assisted sprayers traditionally used for tree and bush fruit spraying are often inefficient and generate high levels of spray drift. Wherever possible spraying equipment and spraying conditions minimising the health risk of the operator and drift must be preferred and tractors must be fitted with a cab.
- The spray impact on the environment can be minimised by the proper calculation of the amount of product needed per ha.

The use of drift reduction techniques with the least drift and pesticide loss should be encouraged whilst maintaining efficacy.

9.8 Pesticide residues

Legal requirements of pesticide residues must be fulfilled.
10. Harvest

Harvest practices must fulfill the general requirements for product quality, food safety and traceability established by national or international standards. Selected must items see below.

10.1 Product quality

The necessary measures to obtain optimum product quality at harvest should be defined for each crop taking into account actual national and international standards for external and internal quality.

10.2 Hygiene

All staff must be aware of the need to harvest, transport, store and pack produce with the utmost care having received basic training in personal hygiene requirements for handling of fresh produce.

A documented and up-dated risk assessment e.g. HCCP covering hygiene aspects of the harvest process and of produce handling operations must be made and hygiene procedures implemented.

With regard to other labour conditions ILO (international labour organisation) charts give guidance.

11. Post harvest management and storage

Post-harvest handling and storage practices should fulfill the general requirements for product quality, food safety and traceability established by national or international standards.

11.1 Hygiene

See 10.2.

11.2 Post-harvest washing

Not applicable.

11.3 Post-harvest treatments

Treatments with pesticides and other chemical substances must, in general, not be applied to fresh produce for immediate consumption.

If there is no alternative to ensure maintenance of good quality of produce destined for longer storage, a selected list of permitted treatments must be established and those eliminated that are in contradiction to the requirements of human health, sustainable production practices and consumers’ expectations on natural and healthy food.

The record of each treatment must include the justification for the application.

11.4 Storage and/or further processing

Storage methods must be such as to maintain high internal and external fruit quality. Stores, controlled atmosphere and refrigeration equipment must be maintained to ensure maximum efficiency and must be regularly monitored to ensure correct operating conditions.

Accurate records must be kept and made available for inspection.

Product in store should be regularly monitored for external and internal condition and firmness.

Only physical methods (frost) are recommended.

12. Energy use, GHG emissions and waste management

GHG emissions from agriculture need to be reduced, specifically Methane (CH4), Nitrous oxide (N2O). Emissions from agriculture constitute more than 50% of the EU emission of these gasses. Also the Carbon dioxide (CO2) emission needs to be lowered.

Agriculture has also a unique opportunity to sequester Carbon in soils. All amounting to a lower carbon footprint of the farm and the produce. Methods to reduce the carbon footprint and to sequester carbon in soils (see chapter on soil cultivation etc.) and long term biomass like woods (> 50 years) should be included in IP methods.

The evaluation of such emission should be based on LCA methods to calculate emissions from cradle to farmgate in terms of CO2 equivalent (farm or produce).

12.1 Energy use and renewable energy

IP guidelines have to specify efforts to reduce energy use.

Apply the techniques that reduce the direct energy consumption and indirect consumption through purchase of inputs and use wherever possible renewable energy (biodigestion, solar and wind energy, etc.) to substitute non-renewable sources of energy.

12.2 GHG emission reduction

IP guidelines have to specify efforts.

Effective and efficient mitigation methods to reduce GHG emission should be applied that do not reduce productivity (both in terms of quality and quantity).
Specifically the following strategies should be evaluated and eventually adapted (see also the other chapters of these guidelines):

- Agrochemical input reduction (pesticides and notably mineral fertilizers).
- Soil management (directed on improving soil structure) minimal tillage.
- Organic matter management, (crop residues, green manures, soil cultivation techniques, crop choice and rotation).
- Best practice of organic manure processing (e.g. biodigestion) and management/distribution (e.g. very fast incorporation or injection in soil).
- Mechanisation, reduce number of operations, fuel use, low energy consuming irrigation, etc.
- Energy use in storage and processing.

<table>
<thead>
<tr>
<th>12.3 Carbon sequestration</th>
<th>IP guidelines have to specify efforts.</th>
<th>Optimize organic matter input (including crop residue) and soil management in order to result in a positive organic matter balance and thus in sequestration of CO2. Possibilities are dependent on the actual organic matter status of the soil.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4 Waste management</td>
<td>IP guidelines have to specify efforts.</td>
<td>Each farm should keep a waste register and develop and implement its sorting and recycling (farm recycling) find alternatives for non degradable materials.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Plant production on mixed farms</th>
<th>Animal and crop production are interrelated components of mixed farms.</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Agronomic aspects</td>
<td>For the production of annual and perennial fodder crops: see specifically the general rules of chapters on fertilization and crop protection. Animal density: A maximum livestock density of 2.0 Livestock Units (LU) /ha must be observed in order to avoid excessive amounts of manure that would offset balanced nutrient cycles (especially of P). Mandatory laws on stock density have to be followed.</td>
</tr>
<tr>
<td>13.2 Animal welfare</td>
<td>Holding conditions for farm animals must satisfy at least national legal regulation. However, farms operating at higher quality levels need to consider ethical aspects, especially the welfare of the farm animals. All veterinary treatments should be recorded.</td>
</tr>
</tbody>
</table>

| 14. Worker’s health, safety and welfare | Any organization that seeks endorsement of IOBC for their guidelines should be able to demonstrate that they follow basic international standards on workers safety, health and welfare. Appropriate standards are those outlined in the Declaration of the International Labour Organisation (www.ilo.org), an organisation of the United Nations. |