These guidelines are meant as inspiration for advanced Integrated Production (IP). Any organization that wants to design and operate an Integrated Production scheme can follow these guidelines. Guidelines drafted by national or regional organisations are referred to in the text as National or Regional IP guidelines.

This guideline consists of parts from the IP General Technical Guidelines on Annual and Perennial Crops and the Crop Specific Technical Guidelines for Integrated Production (text marked in green).

Two levels are distinguished:

- **Strict rules** are the minimum requirements that, according to the IOBC-WPRS, have to be met to ensure that the potential of the IP approach can be realized.
- **Recommendations** are preferred options for a higher level of IP application constituting extra care for the IP objectives. These approaches may increase the cost of production or the effort required.

1. General Aspects

In Integrated production good agricultural practices must be applied, products must be traceable to the producer and self-evaluation practice

<table>
<thead>
<tr>
<th></th>
<th>Strict Rules</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General Aspects</td>
<td>In Integrated production good agricultural practices must be applied, products must be traceable to the producer and self-evaluation practice</td>
<td></td>
</tr>
<tr>
<td>1.1 Good Agricultural Practice (GAP), food safety management procedures and Integrated Production Standard</td>
<td>The IOBC General and crop specific Guidelines do not and cannot mention all published “must” rules of Good Agricultural Practice, but will present selected requirements that seem to be of special relevance to the IP concept.</td>
<td>Any organisation that produces according to a certified IP standard will also have to comply with any national or international GAP/food safety standard as pertinent for their situation and markets.</td>
</tr>
<tr>
<td>1.2 Traceability aspects</td>
<td>All participants of the food production chain are responsible for the quality of the final product and, if appropriate, for the quantification of (pollutant) residue levels. All farm products that are IP certified must be traceable to the registered farm and field where it has been grown.</td>
<td></td>
</tr>
<tr>
<td>1.3 Self evaluation</td>
<td>Each farm participating in a certified IP production scheme has to complete once per year the inspection protocol (= check-list) of the specific IP scheme (as made available by the organisation that implements the IP guidelines).</td>
<td>IP guidelines should specify self-evaluation protocols and encourage their use. The result of this self-evaluation should be available at the farm inspection by the control-certifying organisation, and an appropriate correction plan implemented.</td>
</tr>
</tbody>
</table>

Edition 2016 confirmed in 2023 [(Download as PDF)](#)
2. Biodiversity and landscape

Biodiversity is one of the major natural resources of the farm to minimise pesticide input. IP guidelines therefore must specify a strategy to actively optimise the biological diversity at all 3 levels (genetic, species, ecosystem).

2.1 Ecological infrastructure (ecological compensation areas)

- The (non-cropped) ecological farm infrastructures must cover at least 5% of the total farm surface (excluding forest).
- Existing ecological infrastructure on the farm must be preserved.
- Flowering field margins must be established as reservoirs of pest antagonists.
- Areas of linear elements (e.g. flowering border strips, hedges, ditches, stone walls), and non-linear elements (e.g. groups of trees, ponds etc.), being present or to be planned on the farm should be connected and combined in such a manner that spatial and temporal continuity is obtained. This continuity is a prerequisite for the enhancement of fauna diversity and for the maintenance of a diverse landscape.

Note: The 5% rule does not apply to individual farm in areas with predominantly small farms, with highly scattered properties. In such cases the alternative way to comply with the requirement is to designate a surface of 5% or more of a comparable and homogeneous agro-climatic unit (e.g. same municipal district), set aside as ecological infrastructure by official and well documented regional programs. In this case, it has to be shown that the ecological infrastructure areas are well distributed in time and space in the municipal area, thus providing a guaranteed continuity.

- The surface of ecological infrastructure with low production intensity and without pesticide/fertilizer input should increase to 10%.

- Development of a professionally formulated conservation assessment and plan for the farm and its implementation are recommended.

- Special attention should be given to enhance the functional biodiversity in and around fields:
 - Avoiding risks of increasing host pests.
 - Enhancing the functional biodiversity is possible after conducting specific studies focusing on the target organisms whose populations we wish to increase. IP guidelines should recommend appropriate species.
 - It is recommended to increase biodiversity within orchards providing ecosystem services such as pest regulation or improved nutrient uptake efficiency or weed seed predation. e.g. by practicing an alternating mowing regime with a permanent supply of flowering plants as food sources for the orchard fauna.
 - Plants species that form the vegetation cover in the alleyways should be naturally occurring or be selected/planted due to its favourable characteristics.
 - Contamination by spray drift from neighbouring crops can be detrimental to beneficial and other fauna. It is advisable to protect the orchard by planting windbreaks as barriers.

2.2 List of options

- IP guidelines must provide a list of at least 5 ecological options for the active enhancement of biological diversity.

- At least 2 appropriate options have to be selected as “must” by the individual farmer. Examples of lists of options are given in the [IOBC-WPRS Tool Box](#).

- Specific examples for zucchini and cucumbers are:
 1. Nesting boxes and/or perches for birds,
 2. Refuges for predators and pollinators,
 3. Host plants for beneficials,
 4. Resistant cultivars,
 5. New wildlife habitats.

2.3 Field size

- The lateral dimension of an individual field should be considered as an important element in functional biodiversity, to provide ecological reservoirs and to secure connectivity with adjacent ecological infrastructures (see [IOBC-WPRS Tool Box](#)).

2.4 Buffer zones

- Buffer zones between crop areas and sensitive off-crop areas, (such as surface waters, springs, important ecological infrastructures, heavily travelled roads, infested...)

- Buffer zones should preferably be wider than 3 meters.
crops, hibernation areas of pests and diseases), must respect legal regulations. If no official regulation exists, buffer zones must be at least 3 m wide.

<table>
<thead>
<tr>
<th>3. Site selection</th>
<th>Strict Rules</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only fields suitable for sustainable production of a particular crop can be used for IP production. If new sites are being brought into cultivation a proper assessment must be done on the suitability of the site for IP production considering prior use of land, type of soil, erosion potential, soil health status, and prior use of persistent herbicides, quality and level of ground water, availability of sustainable water sources, and impact on and of the adjacent area. Non suitable sites must not be used for production.</td>
<td>For new agricultural sites a plan needs to be developed, describing and scheduling the measures to minimise all identified (and controllable) risks for environment and crops.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Crop rotation / Sequence</th>
<th>Strict Rules</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop rotation/sequence is a major method to improve soil quality and to prevent pests, diseases and weeds.</td>
<td>A rotation should include at least 4 different crops. In mountain regions and in areas with special conditions, this might not apply. The crop rotation consists out of a number of crops grown in a specific order. The added value of this team of players (crops) increases the more attention is given to a careful design of the rotation: finding an optimum team and line-up. It is therefore recommended to design an optimal crop rotation following the next two steps: 1. Select and characterise potential crops with respect to: a) their production–ecology characteristics, marketability and profitability (soil, climate, infrastructure, market, auctions, industry, labour-, capital- and machinery demand etc.), b) Their plant families (legumes, crucifers etc) c) Their phytopathological profile: range of pests and diseases than can affect the crop (indicate if they are polyphagous or specific) d) Their management demands profile, like sowing time. e) their potential role concerning: l) prevention and control of pests, diseases, weeds (resistance, tolerance and required or possible control measures), mult) physical soil fertility (especially effect on soil structure on compaction-susceptible soils), chemical soil fertility (N need, -offtake, - transfer, organic matter supply), q)cropping period and soil cover (soil protection for erosion-susceptible soils). 2. Design of the rotation with a maximum of positive and a minimum of negative interactions between the crops. Take into account: a) prevention and control of pests and diseases by the crop rotation composition: crops, frequencies and sequence, b) soil fertility in the broadest sense and in particular organic matter- and N dynamics,</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.1 Annual crops: Frequency and sequence</th>
<th>Strict Rules</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>The principle of crop rotation must to be applied, since it is a major method: • To maintain and improve soil fertility in the broadest sense, including soil physical- (structure), soil biological- (soil biota, positive and negative) and soil chemical aspects (nutrient reserves and organic matter composition). The interaction between crops, soil, cultivation, fertilisation and weather determines the soil fertility, which is dynamic in time and space. • To prevent and control pests, diseases and weeds. For instance crop rotation is very supportive for the control of weeds by creating a diversified set of growing conditions (not selecting specific species) and control options. A good use of crop rotation can ensure an optimal quality production with a minimum of external inputs (labour) notably those that are polluting and based on fossil energy (pesticides, fertilisers, machinery and support energy). • Quality production is based on healthy and vital crops as determined by the crop rotation. Crop rotation interacts strongly with nutrient management, soil cultivation, ecological infrastructure management and crop protection. Cover or catch crops have to be considered integrally in the design of the crop rotation. Crop rotation has a temporal and spatial dimension and can be defined as a frequency of the same crop in a certain time period on a given field. • For IP production crop rotation is mandatory for annual crops on the whole cultivated farm area. • A crop rotation must at minimum consist out of 2 crops. - An individual crop considered as part of the rotation should cover at least 10% of the cultivated farm area. Several crops of minor</td>
<td>A rotation should include at least 4 different crops. In mountain regions and in areas with special conditions, this might not apply. The crop rotation consists out of a number of crops grown in a specific order. The added value of this team of players (crops) increases the more attention is given to a careful design of the rotation: finding an optimum team and line-up. It is therefore recommended to design an optimal crop rotation following the next two steps: 1. Select and characterise potential crops with respect to: a) their production–ecology characteristics, marketability and profitability (soil, climate, infrastructure, market, auctions, industry, labour-, capital- and machinery demand etc.), b) Their plant families (legumes, crucifers etc) c) Their phytopathological profile: range of pests and diseases than can affect the crop (indicate if they are polyphagous or specific) d) Their management demands profile, like sowing time. e) their potential role concerning: l) prevention and control of pests, diseases, weeds (resistance, tolerance and required or possible control measures), mult) physical soil fertility (especially effect on soil structure on compaction-susceptible soils), chemical soil fertility (N need, -offtake, - transfer, organic matter supply), q)cropping period and soil cover (soil protection for erosion-susceptible soils). 2. Design of the rotation with a maximum of positive and a minimum of negative interactions between the crops. Take into account: a) prevention and control of pests and diseases by the crop rotation composition: crops, frequencies and sequence, b) soil fertility in the broadest sense and in particular organic matter- and N dynamics,</td>
<td></td>
</tr>
</tbody>
</table>
importance can be included, up to a total of 10%. A single crop can cover at maximum 50% of the surface.
- IP guidelines can and must specify the maximum portion of individual crops in the rotation. For specific crops guidelines can define the maximum proportion of the surface occupied by a specific crop and/or cropping interval (year or crop cycle).

1 in 3 years or 1 in 3 crops.
In protected cucumbers 2 in 4 if grafted resistant material is used.

c) diversification crop - pest, disease weeds interactions,
d) feasibility crop sequence in terms of harvest time, crop residues and volunteers from preceding crops,
e) agronomic optimal use land, labour and equipment.

The obvious tension between agronomic potentials and economic performance determines the final set-up. However, economic performance should be evaluated at rotation/farm level on the midterm and not on crop level on the short term.

1 in 4 years. Avoid cucurbitaceous crops in the interval.
Nematodes: Avoid susceptible tomato cultivars as previous crops.

<table>
<thead>
<tr>
<th>4.2 Perennial crops: Crop sequence and inter/cover crops</th>
<th>Not applicable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3 (Inter) cover crops</td>
<td>Cover crops contribute to maintenance of soil physical property (erosion and compaction) (5.1) and soil fertility (7), enhancement of biodiversity (see 2), control of pest and diseases (see 9.1) and prevention of leaching of N. In perennial crops, cover crops must be used in the alleyways.</td>
</tr>
<tr>
<td>4.4 Any further sub-chapter, e.g. for protected crops</td>
<td>Not applicable.</td>
</tr>
</tbody>
</table>

| 5. Sustainable soil management | Sustainable soil management aims at preserving and optimising soil quality (chemical, physical and biological) in order to sustain quality production on the long term. Sustainable soil management is an interplay between key farming methods such as crop rotation, fertilisation and soil tillage:
- For crop rotation see 4.1 and 4.2 for respectively annual and perennial crops, see also 4.3/5.2 for cover crops
- For soil fertility/nutrient management: see 7.
- For soil tillage see 5.1 and for organic matter management 5.3 |

| 5.1 Soil tillage and compaction | Soil tillage methods and farm machinery use (type, intensity and traffic control: here called field traffic) are key factors to reduce erosion risk and sustain and improve soil fertility. Controlled traffic helps to improve aeration and water infiltration) appropriate soil tillage improves bio-physical soil properties, (e.g. aggregate size and stability) arranging for the least possible soil disturbance (to avoid compaction and erosion). Sound crop residue management helps to improve soil properties and fertility as well as increase water holding capacity
Soil tillage methods and farm machinery for the management of soil must be used that are appropriate for soil type, cropping, topography, erosion risk and climate in order to sustain and improve soil fertility. |
|---| Minimum soil tillage or non-inversion tillage is recommended. However, if soil borne damaging organisms (weeds, pests, diseases) increase to a level that endangers crop production at all, occasional ploughing is appropriate.
Timing of tillage can be used to optimise nitrogen management.
Farm machinery and soil management should be chosen in order to minimise disturbance of soil stratification, to reduce soil compaction, to preserve organic matter, to improve the efficiency and effectiveness of mechanical weed control and agrochemical applications, and to reduce fuel consumption.
GPS guided traffic (controlled traffic) is recommended where appropriate. It contributes to minimising the area that machinery drives on, thus reducing overall soil degradation. |

| 5.2 Soil protection | Soils need to be protected for degradation and erosion by appropriate soil tillage and soil cover strategies maintaining the longest possible soil protection by crop or non-crop cover, without detriment to yield with minimum inputs of fertilisers and irrigation water. Soil protection |
|---| Measures to avoid or to control soil erosion should be defined for each crop based on the erosion potential specific to the region and farm.
In very sloping areas, soil protection can also be achieved with contour cultivation and/or terraces. |
Inputs of fertilisers and irrigation water. Soil protection should be sustainable under the local conditions and optimised locally.

In regions with leaching and erosion risks, an appropriate soil cover, (with adequate N-uptake capacity), must be maintained.

Where erosion damages are visible, a plan needs to be developed and implemented, describing and scheduling the measures to minimise erosion risks.

For perennial crops: use of cover crops is required, see 4.2.

Soils need to be protected for degradation and erosion by appropriate soil tillage and soil cover strategies, maintaining the longest possible soil protection by crop or non-crop cover.

5.3 Organic matter

- **IP guidelines must specify a target range for optimal organic matter content.**
- An organic matter balance must be calculated to determine the surplus or shortage of supply in reference to the defined optimal range.
- Management must be targeted towards maintaining or reaching the targeted level of organic matter content for the specific soil type and location by appropriate measures (fertiliser choice, crop choice, cover crops and green manure etc.).

5.4 Soil disinfection

- Chemical fumigation/disinfection is not allowed.
- Solarisation is strongly recommended where effective.

6. Cultivars, rootstocks / cultivation systems

6.1 Choice of cultivars

- Cultivars and rootstock must be adapted to local conditions.
- IP guidelines must supply the growers with a list of suitable cultivars. The list should be based also on existing official national lists of varieties.
- IP guidelines must specify the relevant traits of the cultivar that have to be taken into account when choosing a cultivar, such as disease and pest tolerance and resistance.
- The cultivar/variety chosen must offer good prospects for economic success with minimal use of agrochemicals.
- IP guidelines must provide a list of the relative susceptibilities of the commonly grown cultivars to all important pests and diseases.

6.2 Seed and plant quality and health status

- **Annual crops:**
 - All seed and planting material for annual and herbaceous perennial crops that is purchased must be certified and accompanied by a plant health certificate.

- **Perennial crops:**
 - If available, planting material for perennial crops must be sound and certified as virus tested, vector and disease free. Where this is not available, planting material of the highest health status available must be used.

- **Disease resistant or tolerant varieties should be chosen if they are available and commercially acceptable.**
- Appropriate cultivars can support IP approaches by reducing off farm agro chemical inputs such as fertilizers and pesticides. For instance through adequate resistance or tolerance to major diseases and pests.
- Alternation of cultivars (e.g. ripening period for flies) capable to disrupt pest cycle are recommended, where appropriate.
- Cultivars resistant or tolerant to pests, physiological disorders, fungal diseases, viruses, phytoplasmas are preferred.
- High tolerance to aphids, viruses, bacteria, fungi.
- Powdery mildew: Tolerant and resistant varieties. Take into account the development of new resistant mildew strains.
- Soil borne diseases (e.g. *Fusarium* spp.): Grafting on resistant rootstock (cucumber).

6.3 Recommendations

- Using resistant and tolerant cultivars and varieties for the major pests and diseases is an essential element of the IP approach.
If available, seed and planting material must be sound and certified as virus tested, vector and disease free. Where this is not available, planting material of the highest health status available must be used.

6.3 Cultivation/fruit management, planting and training system

The cultivation system, including planting pattern, training and pruning, has to respect the optimum physiological status of the crop plant.

New plantations should adopt locally adapted cultivation systems that allow integrated plant protection principles and measures to enhance biodiversity to be integrated optimally.

It is strongly recommended that plant health quality control systems are implemented for private or inhouse (on farm) nursery propagation.

Viruses: Certified virus-free transplants.

Mulch is recommended. Mulching materials for weed suppression should be biodegradable.

<table>
<thead>
<tr>
<th></th>
<th>Strict Rules</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Plant nutrition</td>
<td>Fertilisation should consider all aspect linked to soil management (see §5) and should be adapted to plant needs (types, dosages and timing) considering the farm context.</td>
<td></td>
</tr>
<tr>
<td>7.1 Nutrient management strategy macro nutrients P, K</td>
<td>IP guidelines must specify agronomically desirable and environmentally acceptable target ranges for soil fertility for at least P and K. A nutrient allocation plan for P and K for each crop on a plot/field level must be established, taking into consideration:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- The actual field status of soil fertility in relation to agronomically desirable and environmentally acceptable levels (P, K and Mg).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- The balance approach: Off-farm fertilizer input must only compensate the real exportation and unavoidable technical losses resulting:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- for annual crops in an balance of inputs and exports at a rotational level (including the technical unavoidable losses);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- for perennial crops in an annual balance of inputs and exports.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Additional inputs can be justified to maintain the desired soil fertility level. Inputs exceeding this plan are unacceptable: for instance small quantities of phosphate are sufficient to cause over-enrichment of surface waters. Phosphate from agricultural land is mostly translocated by erosion of small soil particles.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- The distribution of macro nutrients over the years might be different to the export with crops, as long as the rotational balances are maintained.</td>
<td></td>
</tr>
<tr>
<td>7.2 Assessing P, K and other nutrient requirements</td>
<td>Organic matter and nutrient analysis (minimal for P and K) of the soil is the basis for assessing nutrient requirement (except N): see 6.1. Soil analyses for the major elements, P, K, Mg, must be carried out at defined intervals (i.e. 3-10 years, depending on the crop). IP guidelines must specify the analysis techniques and desired ranges of soil fertility. See also 6.1. Uptake and demand criteria for major nutrients are an additional source for fertilization plans, however the soil balance approach on a rotational level must be maintained.</td>
<td>Foliar analysis can be applied as complementary test method.</td>
</tr>
<tr>
<td>7.3 Nitrogen supply and timing</td>
<td>N supply and timing must be matched with the crop demand. The use of nitrogen needs particular care</td>
<td>N - requirements should be covered by Leguminosae, (biological N-fixation), to the largest possible extent while...</td>
</tr>
</tbody>
</table>
because nitrogen leaching and evaporation have significant environmental consequences.

A N fertilization plan must be established that specifies for every crop and plot the N sources and available amounts and shows how the crop demand is met. Taking into account:

Hidden nutrient sources such as importation through polluted air (N).

The soil mineral N status before cropping season.

Mineral N and N mineralisation from organic sources.

IP guidelines have to define for each crop the maximum nitrogen input, (expressed in kg N/ha/year or crop rotation component), and specify eventually the time-window of adequate N application.

The chemical content of at least NPK in all inorganic and organic fertilizers must be known and documented.

Where possible and appropriate N fertilization systems must be used that enable split applications based on N status of soils and or plants.

Splitting of N applications if > 60 kg.

Crop specific validated N advice systems are mandatory when available.

7.4 Supply of other major or micro nutrients

Inputs have to be justified on the basis of a fertilization plan. See 6.1 nutrient allocation plan.

The chemical content of at least NPK in all inorganic and organic fertilizers must be known and documented.

Where foliar symptoms or plant analysis indicate a deficiency of micronutrients the application of these elements is justified.

These elements should be administered via the root system or leaf according to the nutrient.

The replacement of mineral P-input through enhancement of the activity of soil organisms (e.g. mycorrhiza) should be encouraged.

7.5 Organic manures

Organic manures or compost can help to improve soil fertility by increasing organic matter content, improving nutrient and water retention, and reducing erosion.

Organic manures must contain only the lowest possible load of heavy metals and other toxicants and meet the legal regulations.

Any use of treated human sewage sludge on land destined for agricultural use must be in accordance with updated versions and internationally applied “Codes of Practice for the agricultural use of Sewage Sludge”. Existing “Codes of Practice for the Control of Microbial Hazards” give further guidance. Untreated human sewage sludge must not be applied to farmland.

The use of organic fertilisers, including high quality compost, should be promoted.

More severe limitations for heavy metal and other toxicants exceeding minimum legal requirements are to be encouraged.

7.6 Safe and efficient application of fertilisers and manures

Application machinery must be kept in good condition.

Regular servicing and annually verifying calibration, (quantity per time and per area), must be carried out by the qualified farmer or a specialised company.

IP guidelines must contain lists of measures to reduce technically unavoidable nutrient losses by leaching, erosion and evaporation, (e.g. ground cover or timing of soil cultivation).

Manures and fertilizers must not be applied to logged water, frozen soil, or steep ground where there is a risk of run-off.

Slurry should not be applied within 10 m of a watercourse or 50 m from a well, spring or borehole that supplies water for human consumption or for use in farm dairies.

Injection or low emission methods of application of manures and slurry should be applied to reduce ammonia and GHG emissions.

Fertigation recommended to reduce nutrient input.

7.7 Storage of fertilisers

Storage conditions and safety precautions for fertilizers must fulfil the basic requirements of Good Agricultural Practice (GAP).

Solid fertilisers, manures and plant nutrients must be

preventing any danger of leaching and taking into account possible effect on augmenting soil borne damaging organisms.

The total amount of available nitrogen in organic fertilisers should be accounted for a period of 3 years.

The use of slow release fertilizers can contribute to minimize nutrient losses and increasing nutrient availability during the period that they are most needed.

IP growers should be encouraged to reduce the amount of nitrogen whenever possible.

Placed (band) applications of N are recommended where inter-rows permit.
stored in a clean, dry location where there is no risk of water contamination. Inorganic and organic fertilisers must not be stored with fresh produce and plant propagation material.

<table>
<thead>
<tr>
<th></th>
<th>Strict Rules</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Irrigation</td>
<td>Irrigation has to be based on crop requirement and the irrigation method has to be adapted to the crop and farming context. Irrigation must be applied according to need and with the best methods to avoid losses (e.g. micro-irrigation). Excessive soil moisture may result in leaching of nutrients, competition with weeds, and risks of pest and disease (outbreaks). Excessive use of irrigation water is wasteful.</td>
<td></td>
</tr>
<tr>
<td>8.1 Water requirement of the crops</td>
<td>All measures must be taken to minimise water loss and to optimise product quality. Irrigation is only justified if the available water does not satisfy the crop’s requirements taking into account also soil types, climatic conditions and the relation between the amount applied and quality/quantity of the crop. The calculated water amount must not exceed field capacity (water holding capacity) also to avoid nitrate leaching.</td>
<td>Irrigation scheduling systems should be used where available. Advanced systems like deficit irrigation should be used. Systems used should: • Utilise, whenever possible, local data on reference evaporation rates calculated by means of local meteorological stations. • The amount of applied water should be recorded in the farm records.</td>
</tr>
<tr>
<td>8.2 Irrigation methods</td>
<td>A water management plan must be available at the farm that specifies water sources, the decision support tools, the irrigation methods, etc. The irrigation plan needs to be established individually for each plot. This will help to optimise water usage and reduce waste, e.g. irrigating at night, maintenance to reduce leakage, collection of rainwater from roofs, etc.</td>
<td>The most efficient and commercially practical water delivery system should always be used to ensure best utilisation of water resources. Whenever possible, a combination of irrigation with fertilisation (fertigation) should be considered. Take into account that irrigation might influence the nutrient dynamics. The use of drip irrigation is preferred.</td>
</tr>
<tr>
<td>8.3 Water quality and supply</td>
<td>Irrigation water has to be shown to be of adequate quality (conductivity, Cl-content, salinity and content of polluting agents), not exceeding the official tolerance levels, and pathogens relevant to the crop. The use of untreated sewage water for irrigation/fertigation is prohibited. Where treated sewage water is used, water quality must comply with the WHO-Guidelines on "Safe Use of Wastewater and Excreta in Agriculture and Aquaculture".</td>
<td>Irrigation water should be obtained from sustainable sources, (i.e. sources that supply enough water under normal conditions). The regular analysis of the water quality with respect to heavy metals, N, and Na/Cl content etc., is recommended. The installation of measuring devices in every plot for registering the amount of water applied is to be encouraged.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Strict Rules</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Integrated plant protection (IPM)</td>
<td>The Principles of Integrated Plant Protection have to be applied. Preventive (indirect) measures and observations in the field on pest, disease and weed status must have been considered before intervention with direct plant protection measures takes place.</td>
<td></td>
</tr>
<tr>
<td>9.1 Prevention (= indirect plant protection)</td>
<td>The prevention and/or suppression of key pests, diseases and weeds can be achieved or supported among other options especially by: • Choice of appropriate resistant/tolerant cultivars. • Use of an optimal replanting interval or similar strategy to prevent diseases and weakness. • Use of adequate cultivation techniques, (e.g. green cover, pruning, removal of infected prunings, alternate mowing); pruning not only removes dead tissues but also allows proper ventilation and more effective spray coverage.</td>
<td>The prevention and/or suppression of key pests and diseases should be supported among other options especially by: • Hygiene, proper disinfection or cleaning of buildings, clothes, hands, tools, booms, tanks, sprayers and machines is recommended. • Preventing the carryover of organisms which transmit a phytohygenic damage potential, when spread. Examples: Weeds like Cyperus esculentus or Rorippa palustris, nematodes like Globodera rostochiensis and fungi.</td>
</tr>
</tbody>
</table>
- Use of balanced fertilisation (especially low nitrogen input) and irrigation practices.
- Protection and enhancement of important natural enemies by adequate plant protection measures.
- Utilisation of ecological infrastructures inside and outside production sites to enhance a supportive conservation biological control of key pests by antagonists.

IP guidelines must (see 8.1.3.c) describe a basic selection of preventive measures that have to be implemented.

The prevention and/or suppression of key pests and diseases must be supported by:
- See 3, 4, 5, 6, 7 & 8.
- Downy mildew: Improve ventilation in protected cultivation systems.
- Bacteria: Localised drip irrigation is recommended. Improve ventilation in protected cultivation systems.
- Quick removal or incorporation of residues.

9.2 Risk assessment and monitoring

Interventions to control pests, diseases and weeds must be based on adequate monitoring methods and tools to determine whether and when to apply direct control measures.

Robust and scientifically sound warning, forecasting and early detection/diagnosis systems (decision support systems) as well as sound threshold values are essential components for decision making.

The official forecasts of pest and/or disease risks, or officially established threshold levels defined for the region must be taken into account before treatments.

Empirical threshold values should be replaced by more scientifically sound approaches, like DSS, and expert systems.

Existing and validated forecasting models for pests and diseases should be used and the use of adequate monitoring devices by groups of growers recommended.

Lepidoptera: Monitoring for eggs and first larval stages.

9.3 Direct plant protection method

Where indirect plant protection measures are not sufficient to prevent a problem and forecasts and threshold values indicate a need to intervene with direct plant protection measures, priority must be given to:
- Those measures which have the minimum impact on human health, non-target organisms and the environment.
- Biological, biotechnical* and physical methods must be preferred above chemical methods if they provide satisfactory control.

* Biotechnical control methods are defined in applied entomology as highly specific procedures that influence the behavior or development of pests without direct biocidal activity, such as mating disruption, deterrents, sterile insect technique.

Wherever a control measure is deemed necessary, a biological or biotechnical control method must be used if available and effective.

Pests
- White flies: Treatments are permitted when threshold: (honey dew damage on leaves or fruits) is surpassed.
- Lepidoptera: Application of selective products (e.g. Bt, IGR) where available and effective, is mandatory instead of broad-spectrum products.

Weeds
- Priority must be given to mechanical weed control in open fields.

Weed management should be achieved, as far as possible, by non-chemical methods.

Pests
- Aphids: Biological control is recommended e.g. natural enemies, banker plants.
- Spider mites: Biological control recommended.
- White flies: Biological control recommended.
- Thrips: Biological control is recommended.

Diseases
- Bacteria and Viruses: removal and destruction of infested plants.

Weeds
- Mulch.

9.3.1 Restrictive use of pesticides

IP guidelines must (see 8.1.3.d) classify pesticides (to be used for the key pests, diseases and weeds) in three categories: 'permitted' (green list), 'permitted with restrictions' (yellow list) and 'not permitted' (red list) based upon:
- Their toxicity to man
- Their toxicity to key natural enemies

The use of reduced dosages is recommended wherever possible in accordance with national documentation, experience and legislation.

In Europe EPPO standards are also used as references.

Adoption of anti-resistance strategies for the at-risk pesticides is strongly recommended.
- Their toxicity to other non-target organisms
- Their pollution potential for the environment (soil, water, air)
- Their ability to stimulate pests and diseases
- Their selectivity
- Their persistence
- Their potential to develop resistance in target
- Incomplete or missing information
- The necessity of use.

Regularly updated data on the eco-toxicological profiles of pesticides are compiled by IOBC cf. toolbox).

All agrochemicals used must fulfill the basic requirements of GAP.

- The plant protection product applied must be officially approved for the target, as indicated on the product label, or for officially approved off-label uses.
- In countries that have no official registration schemes yet, reference is made to the FAO Code of Conduct on the Distribution and Use of Pesticides.
- All pesticide applications must comply with the statutory conditions regarding the specific crop, maximum permitted total dose, maximum number of treatments, spray intervals and pre-harvest interval, as indicated on the product label or authorised off-label uses.
- Since label doses are maximum doses approved by the registration authorities, reduced dosages are possible, (especially in herbicides).

Chemical soil disinfection is not allowed.

9.3.2 Resistance management

Where the risk of resistance against a plant protection measure is known and where the level of pests, diseases or weeds requires repeated application of plant protection products in the crops, IP guidelines and IRAC / HRAC/FRAC** have to provide clear recommendations or mandatory requests for an anti-resistance strategy to maintain the effectiveness of the products.

**:
- IRAC = Insecticide resistance action committee
- HRAC = Herbicide resistance action committee
- FRAC = fungicide resistance action committee

9.4 Lists to be compiled as part of IP guidelines

IP guidelines must establish for each crop:

1. A restrictive list of key pests, diseases and weeds that are economically important and require regular control measures in the region / crop concerned.

2. A list of the most important known site-specific natural antagonist(s), with information on their importance in each crop. The protection and augmentation of at least 2 antagonists must be mentioned in advanced as a desirable objective sustainable production systems.

3. A list of preventive and highly selective direct control measures to be used in the IP program ("green list"). See explanations and examples in the IOBC-WPRS Tool Box.

4. A list of pesticides to be used with restrictions ("yellow list"): A selected group of plant protection products that do not qualify for the "green list" but
should be available to the grower despite certain negative aspects, (especially for reasons of resistance management or earmarked for exceptionally difficult cases). These listed products are permitted only for precisely identified uses with clearly defined restrictions.

9.5 Application and recording of pesticides	All pesticide applications must be registered with name, date, crop-pest / crop- disease combination, dosage and field identification where applied. Buffer zones of adequate size between treated crop areas and sensitive off-crop areas, (surface water, springs, ecological infrastructures), must be observed, (see point 2.6). The official pre-harvest intervals to minimise pesticide residues must be followed and should, if possible, be extended. They must be recorded for all applications of crop protection product and evidence should be provided that they have been observed. In situations with continuous harvesting, systems must be in place in the field to ensure that safety rules are sufficiently followed (e.g. warning signals). Spraying during windy weather conditions when wind velocity is exceeding 5m/sec, is not allowed.
9.6 Efficient and safe storage and handling of pesticides	The basic requirements of Good Agricultural Practice (GAP) with respect to storage (9.6.1), safe handling application and training (9.6.2) and disposal of surplus mix, obsolete pesticides and empty containers (9.6.3), must be fulfilled and outlined in IP guidelines.
9.6.1 Storage	Pesticides must be stored in accordance to legal regulations, in a locked room and separated from other materials. Keys and access to the pesticide store must be limited to workers with formal training in the handling of pesticides. Pesticides must only be stored in their original package.
9.6.2 Safe handling, application and training	There must be adequate facilities for measuring, mixing and filling the products. Adequate emergency facilities, such as running water, eyewash facilities, first aid box and emergency procedures, must be provided to deal with potential operator contamination. Operators must have appropriate protective clothing and equipment for all operations involving chemicals. All sprayer operators must have appropriate training and hold, where relevant, the appropriate certificate of competence.
9.6.3 Disposal of surplus mix, obsolete pesticides and empty containers	Surplus mix or tank washings must either be sprayed onto a designated untreated part of the crop or disposed of by a registered waste contractor or applied in a biodegradation unit. The safe disposal of spare pesticides must be planned and recorded. They must only be disposed of through an approved chemical waste contractor. Empty pesticide containers must be rinsed with water three times and the rinse water returned to the spray tank. Empty containers must not be re-used but should be crushed or perforated to prevent re-use. Under normal circumstances surplus spray mix should not occur. However, if surplus should occur, disposal must comply with local regulations. Applications onto designated fallow land should demonstrate that this is legal practice and that there is no risk of surface water contamination.
9.7 Spraying equipment (pesticides) and technique

The basic requirements of Good Agricultural Practice (GAP) with respect to the operation and maintenance of spray equipment must be fulfilled and outlined in IP guidelines.

The equipment must be kept in a good state of repair. Adequate functioning of the equipment must be verified before each treatment. A thorough technical service of the equipment, (especially manometers and nozzles), should follow the national rules and obligations.

Equipment must be verified every 4 year (3 years from 2021) or according to the national guidelines by a competent organisation for correct operation and calibration.

The use of aircraft and helicopters is forbidden, except for situations where access to the plot is impossible because of exceptional weather conditions, or if plot topography allows no other way of spraying.

Radial flow air assisted sprayers traditionally used for tree and bush fruit spraying are often inefficient and generate high levels of spray drift. Wherever possible spraying equipment and spraying conditions minimising the health risk of the operator and drift must be preferred and tractors must be fitted with a cab.

The spray impact on the environment can be minimised by the proper calculation of the amount of product needed per ha.

9.8 Pesticide residues

Legal requirements of pesticide residues must be fulfilled.

<table>
<thead>
<tr>
<th>10. Harvest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict Rules</td>
</tr>
<tr>
<td>Harvest practices must fulfil the general requirements for product quality, food safety and traceability established by national or international standards. Selected must items see below.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10.1 Product quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict Rules</td>
</tr>
<tr>
<td>The necessary measures to obtain optimum product quality at harvest should be defined for each crop taking into account actual national and international standards for external and internal quality.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10.2 Hygiene</th>
</tr>
</thead>
<tbody>
<tr>
<td>All staff must be aware of the need to harvest, transport, store and pack produce with the utmost care having received basic training in personal hygiene requirements for handling of fresh produce.</td>
</tr>
<tr>
<td>A documented and up-dated risk assessment e.g. HCCP covering hygiene aspects of the harvest process and of produce handling operations must be made and hygiene procedures implemented.</td>
</tr>
<tr>
<td>With regard to other labour conditions ILO (international labour organisation) charts give guidance.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Post harvest management and storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict Rules</td>
</tr>
<tr>
<td>Post-harvest handling and storage practices should fulfil the general requirements for product quality, food safety and traceability established by national or international standards.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11.1 Hygiene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict Rules</td>
</tr>
<tr>
<td>See 10.2.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11.2 Post-harvest washing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict Rules</td>
</tr>
<tr>
<td>The water used for washing final produce must have potable quality and recycled water must be filtered. At</td>
</tr>
</tbody>
</table>
adequate intervals a water analysis must be carried out by an accredited laboratory at the point of entry into the washing machinery. The levels of the parameters analysed must be within accepted WHO thresholds or must be accepted as safe for the food industry by the competent authorities.

11.3 Post-harvest treatments

Treatments with pesticides and other chemical substances must, in general, not be applied to fresh produce for immediate consumption.

If there is no alternative to ensure maintenance of good quality of produce destined for longer storage, a selected list of permitted treatments must be established and those eliminated that are in contradiction to the requirements of human health, sustainable production practices and consumers’ expectations on natural and healthy food. The record of each treatment must include the justification for the application.

11.4 Storage and/or further processing

Storage methods must be such as to maintain high internal and external fruit quality. Stores, controlled atmosphere and refrigeration equipment must be maintained to ensure maximum efficiency and must be regularly monitored to ensure correct operating conditions. Accurate records must be kept and made available for inspection. Product in store should be regularly monitored for external and internal condition and firmness.

<table>
<thead>
<tr>
<th>12. Energy use, GHG emissions and waste management</th>
<th>Strict Rules</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG emissions from agriculture need to be reduced, specifically Methane (CH4), Nitrous oxide (N2O). Emissions from agriculture constitute more than 50% of the EU emission of these gases. Also the Carbon dioxide (CO2) emission needs to be lowered. Agriculture has also a unique opportunity to sequester Carbon in soils. All amounting to a lower carbon footprint of the farm and the produce.</td>
<td>Apply the techniques that reduce the direct energy consumption and indirect consumption through purchase of inputs and use wherever possible renewable energy (biodigestion, solar and wind energy, etc.) to substitute non-renewable sources of energy.</td>
<td></td>
</tr>
<tr>
<td>The evaluation of such emission should be based on LCA methods to calculate emissions from cradle to farmgate in terms of CO2 equivalent (farm or produce).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12.1 Energy use and renewable energy

IP guidelines have to specify efforts to reduce energy use.

12.2 GHG emission reduction

IP guidelines have to specify efforts.

Effective and efficient mitigation methods to reduce GHG emission should be applied that do not reduce productivity (both in terms of quality and quantity). Specifically the following strategies should be evaluated and eventually adapted (see also the other chapters of these guidelines):

- Agrochemical input reduction (pesticides and notably mineral fertilizers).
- Soil management (directed on improving soil structure) minimal tillage.
- Organic matter management, (crop residues, green manures, soil cultivation techniques, crop choice and rotation).
- Best practice of organic manure processing (e.g. biodigestion) and management/distribution (e.g. very fast incorporation or injection in soil).
- mechanisation, reduce number of operations fuel
12.3 Carbon sequestration
IP guidelines have to specify efforts.
Optimize organic matter input (including crop residue) and soil management in order to result in a positive organic matter balance and thus in sequestration of CO2. Possibilities are dependent on the actual organic matter status of the soil.

12.4 Waste management
IP guidelines have to specify efforts.
Each farm should keep a waste register and develop and implement its sorting and recycling (farm recycling) find alternatives for non degradable materials.

<table>
<thead>
<tr>
<th>13. Plant production on mixed farms</th>
<th>Strict Rules</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal and crop production are interrelated components of mixed farms.</td>
<td>For the production of annual and perennial fodder crops: see specifically the general rules of chapters on fertilization and crop protection. Animal density: A maximum livestock density of 2.0 Livestock Units (LU)/ha must be observed in order to avoid excessive amounts of manure that would offset balanced nutrient cycles (especially of P). Mandatory laws on stock density have to be followed.</td>
<td></td>
</tr>
</tbody>
</table>

| 13.1 Agronomic aspects | Holding conditions for farm animals must satisfy at least national legal regulation. However, farms operating at higher quality levels need to consider ethical aspects, especially the welfare of the farm animals. All veterinary treatments should be recorded. | |

| 13.2 Animal welfare | | |

| 14. Worker's health, safety and welfare | Any organization that seeks endorsement of IOBC for their guidelines should be able to demonstrate that they follow basic international standards on workers safety, health and welfare. Appropriate standards are those outlined in the Declaration of the International Labour Organisation (www.ilo.org), an organisation of the United Nations. | |